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During the past decade, phase-transition phenomena in the random 3-satisfiability (3-SAT) problem has been
intensively studied by statistical physics methods. In this work, we study the random 3-SAT problem by the

mean-field first-step replica-symmetry-broken cavity theory at the limit of temperature 7— 0. The reweighting
parameter y of the cavity theory is allowed to approach infinity together with the inverse temperature 8 with
fixed ratio r=y/ 3. Focusing on the system’s space of satisfiable configurations, we carry out extensive popu-
lation dynamics simulations using the technique of importance sampling, and we obtain the entropy density
s(r) and complexity 3(r) of zero-energy clusters at different r values. We demonstrate that the population
dynamics may reach different fixed points with different types of initial conditions. By knowing the trends of
s(r) and X(r) with r, we can judge whether a certain type of initial condition is appropriate at a given r value.
This work complements and confirms the results of several other very recent theoretical studies.
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I. INTRODUCTION

Critical behaviors in the random 3-satisfiability (3-SAT)
problem were first reported by Kirkpatrick and Selman in
1994 [1]. Since then, physicists working in the field of spin
glasses have done a lot of work on this important model
system in theoretical computer science [2,3]. Mean-field cal-
culations were done to understand the nature of the satisfi-
ability (SAT-UNSAT) transition [2-5], to locate the SAT-
UNSAT transition point [6-8], and to analyze the
performances of various algorithms [9]. Based on the first-
step replica-symmetry-broken (1RSB) mean-field cavity
theory of spin glasses [10], Mézard, Parisi, and Zecchina
created a powerful message-passing algorithm, namely sur-
vey propagation (SP), to find satisfiable solutions to random
3-SAT formulas [6]. The physical picture underlying the SP
algorithm is that, when the density of constraints « of the
system is close to the satisfiability threshold «;, the solution
space of a random 3-SAT formula divides into many well-
separated clusters. Mézard and co-workers also predicted
that the SAT-UNSAT transition for the random 3-SAT prob-
lem occurs at a,=4.2667 [7,8]. This threshold value lies
within the rigorously known lower-bound 3.52 [11] and
upper-bound 4.506 [12] for random 3-SAT, and the mean-
field cavity SP solution is locally stable [8,13,14]. The pre-
dicted SAT-UNSAT transition point of a;=4.2667 is there-
fore conjectured to be exact.

The message-passing SP algorithm corresponds to the
temperature 7=0 (i.e., B=1/T=+x) limit of the 1RSB
mean-field cavity theory of finite-connectivity spin glasses
[10,15]. This 1RSB cavity theory has an adjustable reweight-
ing parameter y. In Refs. [6-8], first the inverse temperature
B is set to infinity, and then y is set to infinity. This means
that the ratio limy_,gy/ 8 is equal to zero. On the other hand,
it is now recognized that, to correctly characterize the equi-
librium properties (as represented by the free-energy Gibbs
measure) of a spin-glass system, the reweighting parameter y
is required to take an appropriate value that is dependent on
B. For a spin-glass system with many-body interactions,
there may exist a temperature range 7,= 7= T, within which
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the optimal value of the reweighting parameter y is equal to
B [16-18]. In the literature on structural glasses [16], T;and
T, are referred to as the dynamical and static transition tem-
perature of the system, respectively. For the random 3-SAT
problem with density of constraints «, if the corresponding
static transition temperature is located at T,.(«)=0, then the
reweighting parameter y and the inverse temperature S
should approach infinity with the same rate. In the present
work, we investigate how the mean-field predictions on the
ground-state properties of the random 3-SAT problem de-
pend on the ratio y/ 3. We generalize the cavity treatment of
Refs. [6-8] and study the statistical mechanics properties of
the random 3-SAT problem in the limit 8— +% and y—
+00, with fixed ratio [19]

(1)

r= X.
B
Population dynamics simulations were performed based on a
set of mean-field IRSB cavity equations, and for each value
of a, the entropy density s(r) and complexity 2(r) of the
system as a function of the ratio r are estimated. The entropy
density s(r) is a measure of the number of ground-energy
configurations within one cluster of the configuration space,
while the complexity (r) is a measure of the total number
of such ground-energy clusters.

As the population dynamics simulations of this work were
running, we noticed that questions closely related to the issue
we discuss here were investigated earlier in Ref. [19] in the
context of the random 3-coloring problem, and more recently
in Refs. [20,21] for random g-coloring and random K-SAT.
While the main focus of Ref. [20] was on the limiting case of
r=1, at which the numerical complexity of the mean-field
theory can be reduced to some extent, detailed discussions
on general values of O0=r=1 were presented in Refs.
[21,22]. The present paper confirms the physical picture
given by Krzakala, Montanari, and co-workers [20-22] on
the solution space structure of random 3-SAT; it is comple-
mentary to these theoretical studies in three important ways.
First, we introduce a different scheme of population dynam-
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ics with importance sampling (this scheme can be readily
extended to finite temperatures); the numerical results ob-
tained from this scheme are in agreement with those reported
in Ref. [22]. Second, we demonstrate that the population
dynamics may reach different fixed points from different ini-
tial conditions. Third, we find that different initial conditions
will lead to the same prediction on the properties of the
dominating solution clusters of random 3-SAT. This last
point is rather interesting and needs to be further studied.

The main results of this paper are summarized here. When
using the F-type initial condition as described in Sec. II C,
the population dynamics demonstrates that (i) at a=q;
=4.2667, 3(r) decreases monotonically with r according to
3(r)=—0.020r* and s(r) increases monotonically with r; (ii)
at @=4.2, the complexity changes with r following 3 (r)
=0.0059-0.02372 and s(r) still increases monotonically with
r; (iii) at @=4.0, both 2(r) and s(r) have a discontinuity at
r=0. When using the U-type initial condition of Sec. II C,
we find that both 2(r) and s(r) are not monotonic functions
of r. At the value of r=1, the complexity %(1) and entropy
density s(1) as a function of the constraint density « are also
calculated by population dynamics simulations with both the
F-type and the U-type initial condition. The numerical data
are consistent with the conclusion of Ref. [20] that, for «
<3.87, the solution space of the random 3-SAT problem
forms a single cluster, while for 3.87 = a <<« the solution
space, although being nonergodic, is dominated by only a
few (of order unity) solution clusters.

The paper is organized as follows. Section II describes the
mean-field cavity approach and the protocol of population
dynamics simulations. The simulation results are reported
and analyzed in Sec. III. We conclude our work in Sec. IV
and discuss possible future extensions.

II. METHOD

A. The factor-graph representation of the random
3-SAT problem

A 3-SAT formula contains N Boolean variables and M
constraints, each of which involves K=3 variables. The de-
gree of constrainedness of a random 3-SAT formula is char-
acterized by the constraint density a=M/N. A 3-SAT for-
mula can be represented by a factor graph G (see Fig. 1) of N
variable nodes (circles i,j,k,...) and M function nodes
(squares a,b,c,...) [6,7,23]. Each function node a corre-
sponds to a constraint; it is connected to K (=3) variable
nodes i € da (where da denotes the set of nearest neighbors
of node a). Associated with each function node a is an en-
ergy E, €{0,2} of the form

1-Jio,
E, =211 #"‘T 2)

i€da

In Eq. (2), o;= %=1 is the spin value of variable node i; Ji
==*1 is the coupling between node i and node a. In the
factor graph, the edge (i,a) is a solid line if J'=1 and it is a
dashed line if J'! =—1. For a given 3-SAT formula, the factor
graph (with all its coupling constants) is fixed, while the spin
configuration o={0y,0,, ...,0,} can change. The total en-
ergy E(o) of a given spin configuration is
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FIG. 1. The factor-graph representation [6,7,23] for a random
3-SAT formula. m;_,j, m;_,,, and x;_.; are messages on the edges of
the factor-graph (explained in the main text).

E(0)= > E,. (3)

34

A variable node i of the factor graph G is connected to k;
function nodes a € di. the vertex degree k; may be different
for different variable nodes. For a random 3-SAT formula
with N> 1, the distribution of k; is governed by the Poisson
distribution of mean 3a, ie., Prob(k;=k)
=f3.(k)=(3a)*e™3%/k!. One can also define the “cavity de-
gree” k;_,, of a variable node i with respect to an edge (a,i)
as k;_,,=|di\al. k;_,, is the number of nearest neighbors of
node i when edge (a,i)is not considered. Obviously, k,_,
=k;—1. A useful property of random graphs is that the distri-
bution of k;_,, is also governed by the Poisson distribution of
mean 3a. We will use this property in the mean-field popu-
lation dynamics simulations as described in Sec. II C.

B. The cavity equations at a general low temperature 7T

At a sufficiently low temperature 7, ergodicity of the
whole configurational space A of the model Eq. (3) breaks
down. It is then assumed in mean-field theories [6,7,10] that
A is split into an exponential number of ergodic subspaces.
Each of these subspaces A, corresponds to a macroscopic
state (macrostate «) of the system at temperature 7. Based on
the cavity approach of spin glasses [10,24], the mean grand
free-energy density of the random 3-SAT problem can be
derived. As the derivation details are well documented in the
literature [7,10] (see also Refs. [18,25]), we shall directly list
the final expressions and give only brief explanations.

At the 1RSB level of approximation, the total grand free
energy of the random K-SAT system is

Gg(B;y) = 2 AG,— (K-1) 2, AG,, (4)

ieg ae§G

where AG; and AG, are, respectively, the grand free-energy
increase caused by adding variable node i and function node
a, with

1 .
AG;=- ; 1og[ 11 (f de—»inHi(Xb—»i)>eXp(_ yAFi)]
bedi
(5)

and
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AG,=- i logl H (f dijan%a(ija))exp(— yAFa)].
jeda
(6)

In Egs. (5) and (6), m;_,, (the cavity magnetization) is the
mean magnetization of vertex i/ within one macrostate «
when the edge (a,i) is discarded, and P;_,,(m;_,,) is the dis-
tribution of this cavity magnetization among all the mac-
rostates of the system. Similarly, Xbsi
=1L, gl (1-J}m;_,)/2] is the directed message from func-
tion node b to variable node i in one macrostate, and
f’,,ﬂi()(,,ﬂ-) is the distribution of this message among all the
macrostates. AF; and AF, are, respectively, the free-energy
increase of macrostate « due to the addition of variable node
i and function node a, with

(=)
AF;=~ /lg 10g|: H [1-(1-eP)x,_i]

bedi
(+)
+[I[1-a _e_2B)Xb~>i]]’ (7)
bedi

bedi\a
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AF, = ;10g 1-(1-2)]] w . (8)

jeda

In Eq. (7), the 12 and T1**) indicate that the multiplication is
restricted to the neighbors b of i for which J,=—1 and J|=
+1, respectively.

On each edge (a,i) of factor graph G, the probability dis-
tributions P;_,, and IA’[H,v are required to satisfy the varia-
tional condition that

8Gy(B3y)
5Pi~>a -

5Gg(Bsy)
5ﬁa~>i

=0. 9)

This variational condition is satisfied by the following two
self-consistent equations on each directed edge a—i and i
—a:

ﬁu—d(Xu—»i)= H (f dm]ﬂa ]Ha( ]Ha))

jeda\i

X 5(XH I1 0=

ot f*“)), (10)
jeda\i

and

H |:f de—>i13h—>i(Xh—>i):| ‘AF’_‘H(S(ml—w _M({Xb—>i:b € al\a})

Pi*?d(mi*}a) =

with M({x;_.;:b € di\a}) being the shorthand notation for

, (11)
I1 {f de-»iﬁbei(Xb—»i)Je_yAFi_'a
bedi\a
=) (+)
H [1-(1-eP)x,_i]- H [1-(1-eP)x,_.]
bedi\a bedi\a
® ) (12)

M xp_;:b € di\a}) =

H [1-(1-ePy, ]+ TI [1-(1-e)x, ]

bedi\a

The free-energy increase AF;_, in Eq. (11) is calculated by
Eq. (7) but with b € di being replaced by b € di\a [i.e., dis-
carding the effect of edge (i,a)].

C. The T—0 limit and population dynamics simulations

Let us now consider the zero-temperature limit (i.e., 3
— +0) of the cavity equations of the preceding subsection.
We focus on the SAT phase of the random 3-SAT problem
and assume the Hamiltonian Eq. (3) has at least one zero-
energy ground state. In the SAT phase at the S— + limit,
the free energy of each macrostate is completely contributed
by entropy.

For the benefit of later discussions, let us introduce two
further shorthand notations Z; and Z,,,

bedi\a

(=) (+)
ZiE H (1 _Xbﬁi)-'- H (1 _Xb*?i)7 (13)

bedi bedi
~JFm;_,)
z,=1-11 —LZ (14)
jeda

Then at B—cc and fixed ratio r, the grand free-energy in-
creases AG; and AG, can be reexpressed as

YAG;=~log= l I1 (J dXhﬁiﬁhﬁi(Xhﬂi))®(Zi)er 10g(z,.):|’

bedi

(15)
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ieda

yAGu=—10g|: H (f dmi—ruPiHu(miHu))(Za)erlog(Za)i|'

(16)

In Egs. (5) and (6), O(x)=1 if x>0 and O(x)=0 if x=0.

In the thermodynamic limit of graph size N— o and M
— oo (with a being finite), the grand free-energy density g(r)
of the random 3-SAT system is expressed as

vg(r) = yAG; - 2ayAG,, (17)

where the overlines indicate averaging over all the possible
local environments of the involved variable node i or func-
tion node a. The complexity 2(r) and mean entropy density
s(r) of the system are related to g(B3;y) by (see, e.g., Ref.

[18])

2(r) == yg(r) + r(BAF;) = 2a(BAF ), (18)

s(r) == ((BAF;) = 2a(BAF,)). (19)

The mean free-energy increase of AF; and AF, as averaged
over all the macrostate of the system is calculated through

I1 { f dxy.iP /Hi(XlHi)}®(Z;)er loelog(Z;)
bedi

<,3AFi> ==

>

H \“I\deﬂiﬁbﬂ[(Xbﬂi)J®(Zi)er log(Zi)

bedi
(20)
(BAF,)=

H [f dmi—>aPi—>a(mi—>a):|®(Za)er log(Zﬂ)log(Za)

i€da

H \‘J dml‘*)api*?tl(mi*?ﬂ)J ®(Za)er log(Z,)

i€eda
(21)

At a given value of constraint density «, we use popula-
tion dynamics [10] to calculate the complexity () and en-
tropy density s(r) for the random 3-SAT problem. The itera-
tive equation (11) for the cavity magnetization distributions
P;_ ,(m;_,) are implemented according to the following pro-
tocol of importance sampling.

(1) A total number of N sets are stored in the computer
memory. Each set, which represents a probability distribution

P;_,(m;_,) of a cavity magnetization, contains M double-
precision values —1=m; ,,<1. These A sets are indepen-
dently initialized according to a certain type of initial condi-
tion (see below).

(2) To perform a single update to the stored population of
distributions, the following steps occur:

(i) A random integer n is generated according to the Pois-
son distribution f3,(n).

(i1) 2n sets (denoted by
le_ﬂ,l ’Pk1—”’1’ ’Pfﬁ”n’Pkn—”’n) are randomly chosen with
replacement from the stored A sets, and 3n coupling con-
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stants {Jj’],Jll‘/l ,Jﬁ,l} are generated, each of which is indepen-
dently assigned a value +1 or —1 with probability one-half.

(iii) 2n cavity magnetizations
(mj _p,» mkﬁh) (mj b, ﬁb) are sampled uni-
formly from these 2n sets respectlvely, and n values Xb,—i
=[(1- J,,] ]ﬁb)(l Jb mkﬁb)/4 are calculated.

(iv) Z=11,, Ay (1= Xb,—»z)+Hb1J’ —1(1=xp, ) is calcu-

lated and a new cavity magnetlzatlon m;_,
=[11y, 7, —1(I=xp )= Hb,J' —1(1=xp,-)1/Z; is calculated.

(v) ThlS new m;_,, value is accepted with probability pro-
portional to @(Z;)exp[rlog(Z;)] by way of the Metropolis
importance-sampling method [26] and, if it is rejected, the
old m;_,, value is retained.

(vi) Repeat (iii)—(v) a number of M X L times and gen-
erate a new set P;_, with M independent m,_, values
(sampled with interval £). Obtain the value of yAG; and
(BAF;) as expressed by Egs. (15) and (20) using the sampled
data of these M X L repeats.

(vii) Replace a randomly chosen stored old set with the
newly generated set P;_,,,.

(3) Repeat step (2) three times to obtain three probability
distributions P;_,(m;_,), P;_,(m;_,), and Pi_ (m;_,). A
total number of M X L triples (m,_,,,m;_,,m_,,) are then
sampled uniformly. From these sampled data, yAG, and
(BAF,) as expressed by Egs. (16) and (21) are calculated.

(4) Repeat steps (2) and (3) a number 7; X NV of times for
the population dynamics to reach a steady state and another
number 7, X N of times to collect values of yAG,, yAG,,
(BAF;), and (BAF,). From these collected values, the grand
free-energy density g(r), the complexity 2(r), and the mean
entropy density s(r) are calculated according to Egs.
(17)—-(19), respectively. The standard deviations of the nu-
merical results are estimated by the bootstrap method [27].

The above-mentioned population dynamics procedure is
quite time-consuming. The total simulation time is roughly
proportional to NML(7;+7,). We have used different sets
of parameter values to reach a balance between high numeri-
cal precision and computation time. The data reported in the
next section are obtained with the following set of param-
eters: A'=1000, M =2000, £=50, 7,=500, and 7,=1500
(with the exception that, in Fig. 5, the simulation results at
a=3.875 and 3.9, which are close to the ergodicity transition
point of the random 3-SAT system, are obtained with A
=2016 and £=100). At each pair of values («,r), this set of
parameters leads to satisfactory numerical precision with a
tolerable simulation time of about ten days (through a
present-day personal computer). If we use A/=2000 and M
=4000 in the simulation, the mean values of the calculated
thermodynamic densities will not change much, while their
standard deviations can be reduced to about half the level of
those reported in the next section.

It is recognized by test runs that the results of the popu-
lation dynamics can have a strong dependence on initial con-
dition. The set of self-consistent equations (10) and (11) for
the random 3-SAT problem may have more than one stable
fixed point. To investigate this initial condition dependence,
we use the following two major types of initial conditions to
produce numerical data of the next section.
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FIG. 2. (Color online) The complexity (a) and mean entropy
density (b) for the random 3-SAT problem with constraint density
a=4.2. Black circles and red square are, respectively, simulation
results obtained using the F-type and the U-type initial condition.
The blue dashed line in (a) is a fitting to the circular points with
3.(r)=0.0059(2)-0.023(1) 2.

F-type. The cavity magnetization distribution P;_,,(m;_,,)
at the beginning of the population dynamics is set to be
P, m;_,)=0.45 8m;_,,1)+0.45 8(m,_,,—1)+0.1u(m,_,),
where u(x) is the uniform distribution over —1 <x < 1. This
initial condition assumes that the spin value of a vertex i is
frozen in most of the macrostates.

U-type. The initial cavity magnetization distribution
P,_,m;_,) is set to be P;_,(m;_,)=u(m,_,) with -1
<m;_,<<l. This condition assumes that initially the spin
value of a vertex is unfrozen in all the macrostates.

The plausibility of each of these two initial conditions
will be judged by its predictions.

III. RESULTS
A. Population dynamics at a=4.2

At @=4.2, the complexity 3(r) and the mean entropy
density s(r) of the random 3-SAT are shown in Fig. 2 for
0=r=0.75. Under the F-type initial condition, the ob-
tained complexity values can be fitted by 2(r)=a-br?
with @=0.0059*+0.0002 and 5=0.023*=0.001, while the
mean entropy density s(r) increases monotonically from
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5(0)=0.060%=0.001 to 5(0.75)=0.097 = 0.001. These results
appear to be quite reasonable: (i) According to Refs.
[16-18], as r increases, the complexity should decrease and
the mean entropy density should increase; (ii) the value of
2.(0) agrees with the prediction of the SP algorithm [7],
which gives 2(0)=0.00599; (iii) 2(1) is negative, in agree-
ment with Ref. [20]. The mean-field theory suggests that the
solution space of a typical long random 3-SAT formula with
constraint density a=4.2 is dominated by a few clusters of
entropy density s=s(0.5)=0.088 =0.001 [with %(0.5)=0],
although clusters of lower entropy density s=s(0)=0.060
are most abundant in the solution space. These two entropy
density values are in agreement with the results of Ref. [22].
When r=0.4, the complexity and mean entropy density
values reported by the population dynamics with the U-type
initial condition are in agreement with those obtained with
the F-type initial condition. For »=0.4, the mean-field popu-
lation dynamics is insensitive to initial conditions. However,
under the U-type initial condition the complexity %(r) in-
creases with r and the mean entropy density s(r) decreases
with » when r€[0,0.4). This behavior is unphysical, be-
cause the mean entropy density s(r) should be an increasing
function of r [18]. Therefore, under the U-type initial condi-
tion, the parameter r should not be set to values lower than
0.4. Under the U-type initial condition, the fixed point of the
population dynamics at r=0 corresponds to the replica-
symmetric solution of the SP algorithm [7]. This replica-
symmetric solution is always stable in the mean-field theory
of Ref. [7], as entropic effects are completely neglected.
When the entropy of each zero-energy macrostate is properly
considered in the mean-field theory, the present paper indi-
cates that this replica-symmetric solution is no longer stable
(see also Refs. [20,22]). To get physically meaningful results
for 0=r<0.4 under the U-type initial condition, it is neces-
sary to assume further organization of the solution space of
the random 3-SAT problem (splitting of a cluster of solutions
into many subclusters of solutions). Implementing this
higher-order hierarchical structure into the population dy-
namics is conceptually simple, but the algorithm will be ex-
tremely demanding on computer time and memory space.

B. Population dynamics at «=4.2667

The SAT-UNSAT transition of the random 3-SAT problem
is predicted to occur at a=4.2667 [7,8]. At this density of
constraints, Fig. 3 shows how the complexity and entropy
density change with the ratio r. Under the F-type initial con-
dition, the complexity decreases with r according to X(r)
=—br* with b=0.020+0.001; and consistently, the entropy
density s(r) increases with r monotonically. The present
work, therefore, further confirms that the satisfiability transi-
tion of the random 3-SAT takes place at a=4.2667: includ-
ing the entropic effect into the mean-field theory does not
change the predicted location of the SAT-UNSAT transition.
At this transition point, a typical random 3-SAT formula of
length N still has an exponential number exp[Ns(0)] of sat-
isfiable solutions, with s(0)=0.058+0.001. But it is ex-
tremely difficult for a local or global algorithm to find one
such solution.
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FIG. 3. (Color online) The complexity (a) and mean entropy
density (b) for the random 3-SAT problem with constraint density
a=4.2667. Black circles and red square are, respectively, simula-
tion results obtained using the F-type and the U-type initial condi-
tion. The blue dashed line in (a) is a fitting to the circular points
with 3(r)=-0.020(1) 2, while the black dotted line marks 3(r)
=0.

As in the case of a=4.2, if the U-type initial condition is
applied, both the calculated complexity 2(r) and mean en-
tropy density s(r) do not change monotonically with r. Fig-
ure 3 indicates that the results from the U-type initial condi-
tion are valid only for r=0.25. For 0=r=0.2, as the
increasing trend of the complexity 2(r) and the decreasing
trend of the entropy density s(r) are not physically meaning-
ful, the positivity of %(r) cannot be taken as evidence that
the random 3-SAT is still in the SAT phase at @=4.2667.

C. Population dynamics at a=4.0

For a=4.2667 and 4.2, the complexity 2(r) calculated
with the F-type initial condition reaches maximum at r=0
and it has the form 3(r)=a—b r* when r €[0,1). However,
Fig. 4 demonstrates that a different situation occurs for «
=4.0. At this density of constraints, the population dynamics
with r=0 and the F-type initial condition report a complexity
value 2(0)=0.0217 £ 0.0006 (agreeing with the prediction of
the SP algorithm [7]) and a mean entropy density value
5(0)=0.069 = 0.003. But as the ratio r is set to slightly posi-
tive values, the complexity suddenly drops to 2(r) =0 while
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FIG. 4. (Color online) The complexity and mean entropy density
(inset) for the random 3-SAT problem with constraint density «
=4.0. Black circles are simulation results obtained using the F-type
initial condition. The blue dashed line marks 2(r) =0.

the mean entropy density jumps to s(r)=0.125. As r in-
creases further, both X(r) ands(r) keep almost constant until
r is close to unity. For »=0.8, 2(r) and s(r) have, respec-
tively, a decreasing and an increasing trend. The discontinu-
ity at r=0 for both 2(r) and s(r) was totally unexpected (we
have performed population dynamics simulations with differ-
ent F-type initial conditions to rule out the possibility of
numerical artifact). Similar discontinuity was also observed
in the g-coloring problem [21]. If we look at the steady-state
cavity magnetization distributions P;_ ,(m,_,), we find that
they are far from being in the form of a & function in the
whole range of 0 =r=1. This later observation confirms that
at @=4.0, the ergodicity property of the solution space of the
random 3-SAT is indeed violated. Figure 4 indicates that at
a=4.0, the solution space of the random 3-SAT problem is
organized far more complex than what has been assumed in
the mean-field theory. This point should be investigated more
thoroughly.

For the limiting case of =0, it has already been shown
that the mean-field solution at the first-step replica-
symmetry-broken level is unstable toward the full-step
replica-symmetry-broken level [8,13] for «<4.153. The dif-
ferent behaviors demonstrated in Figs. 2-4 for «
=4.2,4.2667, and 4.0 confirm the earlier stability analysis
[8,13] and further suggest that, if the IRSB mean-field solu-
tion is unstable at r=0, it will be unstable when r is positive
but less than a certain threshold value ry,. This threshold
value may be smaller or larger than unity (for a=4.0, it
appears that r;,=0.8).

D. Population dynamics at r=1

Now let us fix r=1 and study how the complexity (1)
and mean entropy density s(1) change with the constraint
density «. Using an elegant tree reconstruction technique,
Montanari and co-authors [20] found that, for the random
3-SAT problem, (1) changes from being exactly zero to
being negative at a=~3.87. The alternative population dy-
namics approach of the present paper reports consistent re-
sults (see Fig. 5). For @=3.8 and 3.85, we have checked that

066102-6



T— 0 MEAN-FIELD POPULATION DYNAMICS ...

I T I T I T I T I
] ™ IEEEREREEEEE Q- é ..... % .......................... -
’: -0.001 -
.‘% | : 0.16 [ 1 T 1 17 1] ]
= 015 e .
E 0025 L s ] i
© 2 0.4 o -
>
i | o i ]
o003k 2 “1°C "
) = —l P I T I ﬁ
- 38 385 39 395 4 g
1 1 ¢ 1 1
1 1 1 1
0.004 3.8 3.85 39 3.95 4
o

FIG. 5. (Color online) The complexity 2(r=1) and the mean
entropy density s(r=1) for the random 3-SAT problem with con-
straint density «. Black circles and red squares correspond to the
F-type and the U-type initial condition, respectively. The blue dot-
ted line marks > =0.

the steady-state distributions P;_ (m;_,,) of cavity magneti-
zations are all § functions (ergodicity property of the solution
space is not violated). For @=3.875, simulations with both
the F-type and U-type initial condition give negative values
for the complexity 2(1). At a very close to the ergodicity
transition point of 3.87, we have also observed that the popu-
lation dynamics simulation needs a much longer time to
reach steady state. This behavior is very probably caused by
the divergence of relaxation times of the population dynam-
ics at the vicinity of the ergodicity transition («=3.87). Such
a critical slowing-down was investigated analytically and nu-
merically in Ref. [28].

When a>3.87, very probably most of the satisfying so-
Iutions of a random 3-SAT formula can be grouped into one
of a subexponential number of clusters of solutions [18,20].
It will then be very difficult to prove mathematically the
clustering of solutions following the method of Ref. [19].

IV. CONCLUSION AND DISCUSSION

In this paper, we studied a spin-glass model of the random
3-SAT problem at the temperature 7— 0 limit by the mean-
field first-step replica-symmetry-breaking (1RSB) cavity
method. The reweighting parameter y (corresponding to the
level of macrostates) and the inverse temperature B8 were
allowed to approach infinity with fixed ratio r=y/B. The
complexity and mean entropy density of the random 3-SAT
are calculated as a function of r by population dynamics
simulations. The sensitivity to initial conditions of the simu-
lation results was investigated by initializing the cavity mag-
netization distributions in two different way (see Sec. II C).

When the F-type initial condition is used, at a=4.2 the
complexity X(r) decreases monotonically with r and be-
comes negative when r exceeds 0.5; the mean entropy den-
sity s(r) increases monotonically with r. The most abundant
clusters of solutions of the random 3-SAT system correspond
to r=0 and have mean entropy density s(0)=0.060, but the
(few) dominating clusters of solutions correspond to r=0.5
and have mean entropy density s(0.5) =0.088. The complex-
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ity 2(r=0) decreases continuously with « and reaches zero
at «=4.2667, where the random 3-SAT experiences a SAT-
UNSAT transition. At this critical constraint density, the so-
lution space of the random 3-SAT problem still has a positive
mean entropy density s(0)=0.058.

When the U-type initial condition is applied, the complex-
ity 3(r) and mean entropy density s(r) are both nonmono-
tonic functions of r. At @=4.2, the population dynamics al-
gorithm reported a zero complexity value at r=0. As r
becomes positive, 2(r) first increases with r, reaches a maxi-
mal value at r=0.4, and then decreases with r. The mean
entropy density s(r) has a reverse trend. The nonmonotonic
behaviors of 2(r) and s(r) indicate that, for the U-type initial
condition, the population dynamics will not report physically
meaningful results if r is close to zero. At a=4.0, if the
parameter r is set close to zero, even the population dynam-
ics with the F-type initial condition will fail to get plausible
results.

At r=1, the complexity and mean entropy density as a
function of constraint density « were also investigated by
population dynamics. For a=3.85 or lower, ergodicity of the
solution space of the random 3-SAT is unbroken and the
complexity is exactly zero. For a=3.875 or higher, the popu-
lation dynamics with both the F-type and the U-type initial
condition predicted negative values for 2(1). The zero-
energy configuration space of the random 3-SAT problem
clusters into many subspaces for a>3.875, but only subex-
ponential clusters are dominating the configuration space, in
agreement with Ref. [20].

This paper focused on the zero-energy configurational
space of the random 3-SAT problem. When the ground-state
energy of the system becomes positive, the T— 0 limit for-
mulas in Sec. II C need to be revised. Most importantly, in a
given macrostate a cavity magnetization m,_,, may take one
of the following three possible forms:

1—m 2P

i—a
m_,=1—1+ ml-__me'm (22)
0

i—a’

m

where —1<m? <1, m =0, and m; ,,=0. In the present

paper, we have simply set m!_,=m; =0 without affecting
the results of population dynamics, but for systems with
positive ground-state energies, the more general formula
should be used. Even if the ground-state energy of the sys-
tem is zero, Eq. (22) should be used if one wants to study the
properties of metastable macrostates (with positive minimal
energies) or the low-temperature properties of the system.
We will return to this point in a later publication.

As Refs. [20,22] and the present paper demonstrate, the
zero-energy configuration space of the random 3-SAT prob-
lem is divided into clusters of different sizes. For the random
3-SAT problem, will the minimal-energy configurations with
a given positive energy value E also be split into clusters of
different entropies S? To detect such a possibility, a natural
extension is to introduce two reweighting parameters (say y
and r) for both energy and entropy, and to reweight each
minimal-energy cluster « by a factor exp(—yE+rS). Together
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with Krzakala and Zdeborova, we are working on this point
for the random 3-SAT problem and the g-coloring problem.

Although physicists believe that the solutions of a large
random 3-SAT formula are organized into well separated
subspaces, clustering of random K-SAT solutions has been
rigorously proven only for K=8 [29]. Recently, there has
been a lot of simulation work on this important issue (e.g.,
[30,31]), but a lot of work still remains to be done to fully
understand the energy landscape of the random 3-SAT prob-
lem.
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